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Figure 1: Construction of the Paris Metro in 1902-1910.

ABSTRACT
The construction of public transport networks is often gradual with
for example almost a century for the construction of the Parisian
metro. One may wonder whether these networks, which many peo-
ple use every day, are adapted to the needs of the average traveler. If
we could redo the entire infrastructure today, could we find a more
efficient network? Less expensive to build? In this work, the objec-
tive is to build a subway network by performing link prediction
given the geographical position of the stations. We place ourselves
in a context where initially, no link is present between the nodes.
Therefore, classical unsupervised techniques such as neighborhood-
based methods or proximity-based methods are hardly applicable.
Instead, we try to perform link prediction in a more combinatorial
fashion where the notion of neighborhood is not directly used. In-
stead of calculating similarities between nodes to predict a potential
link, we are more interested in the utility of a link with respect to a
score that we want to maximize. We formulate this objective as an
optimization problem on a graph space and propose a heuristic to
predict relevant links. Finally we compare the obtained graph with
the real Parisian subway network.
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1 INTRODUCTION
Graph theory is a field widely studied by scientists because it allows
the modeling of problems as varied as complex. It is of particular
interest in the study of transportation networks because of the
economic stakes involved. These networks are created with a view
of improving the flows specific to globalization (trade flows for
example), they must therefore be efficient.

Nevertheless, their construction requires extremely costly works
that must be carefully studied beforehand; the search for an efficient
network at the lowest cost is therefore a major issue in urban
planning. For example, the Grand Paris Express project aims to
build four new automated metro lines around the capital. In total,
200 kilometers of network and 68 stations will be built by 2030, at
an estimated cost of 25 billions euros.

The starting point of this work is a simple question : Given the
positions of several subway stations within a city, how should we
connect them to result in an effective transportation network with
a reasonable cost ? This question calls for a first comment : Are
the positions of the subway stations not variables that should be
also optimized instead of being given data ? In fact, this could be
another problem. However, here we consider that they are given
because they represent popular places where people want to go
anyway (business districts for example). Therefore, subway stations
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represent passengers’ demand that the network operator must sat-
isfy. Another comment would be, what do we mean with "effective
network" ? In this work we define the average travelling time of a
network that encapsulates this idea of effectiveness and intuitively,
one may observe that for the traveller, the most effective network
is the complete graph over the stations.
Unfortunately, this network is also the most expansive to build. This
tells us about the trade-off that should be found between reducing
the building cost and reducing the average travelling time. Opti-
mizing both would be a very complex multi-objective optimization
problem. Instead, we set a constraint over the building cost and
try to optimize the average travelling time. Our problem is almost
identical to what is called in the scientific literature the Network
Design Problem, which is NP-complete [1]. We propose a heuristic
that involves to start from a minimum spanning tree. It will give
us one of the less expansive admissible graphs. Then, the idea will
be to improve the average travelling time by performing carefully
designed link prediction to add good edges without exceeding the
cost constraint.

The plan of this study is the following : first, we formalize the
problem as an optimization problem over graphs and we describe
our objective. Then, we present our heuristic and the results. Finally,
we give some guidelines for further research and other heuristics.

2 RELATEDWORK
The problem we study is part of the more general framework of
network design problems. A network design problem (NDP) is to
select a subset of links in a transport network that satisfy passengers
or cargo transportation demands while minimizing the overall costs
of the transportation. It is one of the most challenging transport
problems and is defined as follows. In the past decades, various
approaches have been presented to address this issue. The solutions
can be divided into two categories: exact solutions [1], [2] and
heuristic solutions [3], [4].

Exact solution methods can deal with NDP in a rigorous manner.
However, they are inefficient when dealing with large-scale real-
world networks. Heuristic approaches, emerged in the past decades
and provide approximate yet efficient solutions. The heuristic ap-
proaches can tackle a real-world problems with a large number of
design variables and therefore these approaches are more popular
than exact solutions. Many heuristic approaches are biologically
inspired as living species have optimized their transportation net-
works over millions of years with evolution: the vascular systems
of plants and animals, the foraging patterns of social insects, the
migration paths of birds and animals, the hunting routes of preda-
tors. It is therefore often very fruitful to apply natural solutions to
the design of man-made objects.

As an example, [5] uses a bio-inspired heuristic inspired from
the Physarum polycephalum to compute an efficient network. It is
a unique creature which exhibits properties of internal and external
living transport systems and which creates a protoplasmic network
to cover the food areas it is interested in and in a surprisingly
optimal way.

On the other hand, the application of link prediction techniques
to transportation networks is not new. Similar problems have al-
ready been studied with for example the optimization of an air
transport network [6].

Finally, when we design a transportation network, we should
ideally make it fault tolerant, capable of handling traffic accidents,
terrorist attacks, and urgent road maintenance. Fault tolerance and
high performance lead to higher construction and maintenance
costs. However for simplicity purpose, in this study, we do not
focus on making the network fault tolerant as in [5].

3 PROBLEM DEFINITION
The efficiency of a transport network is most often measured by
the ability to move easily through the network, i.e. to get from
point A to point B in a suitable time. In order to give a concrete
meaning to the mathematical objects we manipulate, we will take
the example of a subway network but this is also applicable to any
type of transport network.

Let𝐺 = (𝑉 , 𝐸) be a graph with𝑉 denoting the set of stations and
𝐸 the set of tunnels connecting them. We define the global building
cost of the graph G as :

𝐶 (𝐺) =
∑
(𝑖, 𝑗) ∈𝐸

𝑙𝑖 𝑗𝛼

where 𝑙𝑖 𝑗 is the tunnel length between stations 𝑖 and 𝑗 and 𝛼 is the
cost for a one kilometer tunnel.

For each station 𝑖 , we associate the traffic 𝑓𝑖 that represents the
number of travellers that come in the subway through 𝑖 over a year.
We suppose that the number of travellers coming out from 𝑖 is the
same. Then 𝑓𝑖 𝑓𝑗

𝐹 2 is the probability for a traveller to go from station
𝑖 to station 𝑗 with 𝐹 denoting the total amount of travellers using
the network over a year :

𝐹 =
∑
𝑖∈𝑉

𝑓𝑖

Finally, we define the average travelling time of 𝐺 as :

𝑇 (𝐺) =
∑
(𝑖, 𝑗) ∈𝑉 2

𝛿𝑖 𝑗

𝑆

𝑓𝑖 𝑓𝑗

𝐹 2

where 𝑆 denotes the average speed of a subway wagon and 𝛿𝑖 𝑗
the distance of the shortest path between 𝑖 and 𝑗 in 𝐺 . If 𝐺 is not
connected, then 𝑇 (𝐺) is infinite.

The operator must satisfy travellers’ demand at best i.e to supply
the fastest possible network while being consistent with stations
traffic. However, he doesn’t have an unrestricted budget. Let us call
𝑅 the maximum building cost that the operator allows himself.

Then, the problem comes down to :

min
𝐺

𝑇 (𝐺)

s.t. 𝐶 (𝐺) ≤ 𝑅
𝐺 connected

The notion of efficiency of a graph is thus quantitatively defined
and measured by the value of 𝑇 (𝐺). It is this one that we try to
optimize and that we will use to perform the link prediction.
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In this definition of the problem, we place ourselves in the case
where no initial graph is given to us, only the set of stations. More
precisely, we start from the initial graph 𝐺0 = (𝑉 , 𝐸0) with 𝐸0 = ∅
and try to add new tunnels to 𝐸0 to achieve a good 𝑇 (𝐺).

4 METHODOLOGY
4.1 Data collection

Figure 2: Paris today’s network.

The goal of this work is to build a transport network from the ge-
ographical position of the stations to be served. In order to evaluate
our link prediction method we want to compare the obtained graph
with a real network. To do so, we have collected the geographical
position of the Parisian metro stations as well as their associated
traffic for the year 2014 on the website https://data.ratp.fr.
Fig 2 shows the position of the stations and the actual Parisian
network that connects them.

4.2 Initial graph
In our problem there is no initial structure given to us to perform
link prediction. In our opinion, this is more consistent with the real
situation where the transport company wants to build from scratch

the best network possible to meet passenger demand. This is differ-
ent from the assumption used in standard link prediction problems
that use the neighborhood of nodes to predict the existence of new
links as it is the case in neighborhood-based methods for example.
The main idea of these techniques is to assign a similarity score to
a pair of nodes based on the number of common neighbors. The
higher this score is, the more likely there is a link between the two.
Here, the goal is not to predict links using a pre-existing structure,
but to find an optimal global structure from scratch.

Thus, we need to find an initial graph from which we could
predict the most interesting links. We could create a k-NN graph
using the position of the stations, only we would then have to
proceed to the deletion of irrelevant tunnels which is not straight
forward. To find such a graph, we must take into account the two
optimization constraints of our problem. Namely, the connectivity
constraint as well as the cost constraint. It happens that we can
compute a connected graph that is optimal from the builder’s point
of view, i.e. that solves the following problem :

min
𝐺

𝐶 (𝐺)

subject to 𝐺 connected

This graph is a minimal spanning tree over the set of stations
and we can obtain it via Kruskal’s algorithm [7] which sorts the set
of possible links between each station according to length and add
them in increasing order if they don’t create a cycle.

Algorithm 1 Kruskal’s algorithm
Input: 𝐿 is a sorted list of all possible edges between stations.
Ouput: 𝐴 is a minimum spanning over the stations.
𝐴← ∅
𝐶 ← ∅ //Connected components, C[x] denotes the components of
the node x.
for (𝑢, 𝑣) ∈ 𝐿 do
if 𝑢 ∉ 𝐴 and 𝑣 ∉ 𝐴 then

Add (𝑥,𝑦) to 𝐴
Add [𝑥,𝑦] to 𝐶

else if 𝑥 ∈ 𝐴 and 𝑦 ∉ 𝐴 then
Add (𝑥,𝑦) to 𝐴
Add 𝑦 to 𝐶 [𝑥]

else if 𝑥 ∉ 𝐴 and 𝑦 ∈ 𝐴 then
Add (𝑥,𝑦) to 𝐴
Add 𝑥 to 𝐶 [𝑦]

else
if 𝑦 ∉ 𝐶 [𝑥] then

Add (𝑥,𝑦) to 𝐴
Concatenate 𝐶 [𝑦] and 𝐶 [𝑥]

end if
end if

end for
return A

4.3 Link prediction heuristic
Once the initial graph is obtained, we have a structure that ensures
connectivity and an optimal building cost. However, this graph
is one of the worst acceptable graphs from the traveler’s point of
view because there are no cycles, thus forcing unnecessary detours.
Indeed, as can be seen in Figure 3, the tree structure means that
some stations that are very close are not easily connected. Adding
a tunnel between them, especially if they are highly popular places,
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Figure 3: Minimum spanning tree.
Red stations are very close but the path that connect them
is very long. We might want to predict a link here.

would be very useful and it is this type of connection that we are
trying to predict.

Moreover, two subway stations having many neighboring sta-
tions in common have no reason to be connected. Indeed, this
would mean that there is already a very short path between the
two. Neighborhood-based and proximity-based methods are then
not relevant here.

Therefore instead of computing a similarity score between two
nodeswe rather compute the utility score of a pair with respect to an
objective function to optimize, in this case 𝑇 (𝐺). More specifically,
we define the utility score of the pair (𝑥,𝑦) as

𝑐 (𝑥,𝑦) = 𝑇 (𝐺) −𝑇 (𝐺 ∪ (𝑥,𝑦))
𝑙𝑥𝑦𝛼

This value denotes the ratio between the time saved by adding
(𝑥,𝑦) to 𝐺 and the corresponding additional building cost. As we
want an edge to increase𝑇 (𝐺) and to be short, we should add edges
with the highest utility.

To compute 𝑐 (𝑥,𝑦) we need to compute the average travelling
time 𝑇 (𝐺) of a graph 𝐺 = (𝑉 , 𝐸) and therefore we must quickly
access to the length of the shortest path 𝛿𝑥𝑦 for each pair of stations
(𝑥,𝑦) ∈ 𝑉 . An idea could be to use the dynamic programming Floyd-
Warshall algorithm [8]. However, the complexity of this algorithm
is 𝑂 ( |𝑉 |3) and it takes it takes about 10 minutes to compute the
distances between all pairs of vertices on our computer. Therefore,
we will not be able to quickly iterate our heuristic because at each
step, computing 𝑇 (𝐺) would be too long.

To get around this problem, we use a property of the graphs we
are dealing with : they are sparse which means that they have very
few edges. Then using Dijkstra’s algorithm [9] for each source node
is more effective because the complexity is 𝑂 ( |𝐸 |.|𝑉 |.log( |𝑉 |)). On
the same computer, we are now able to compute all the distances
in few seconds.

However, there are more than 45.000 possible edges over the
302 stations ( |𝑉 | ( |𝑉 |−1)2 ). So we can’t just compute 𝑇 (𝐺) for each

of them because it would be too long and we want a heuristic that
works for higher |𝑉 | than 302. To address this issue, we propose
the following simple heuristic :

minimum spanning tree

selection of the K short-
est non used edges

add the edge with the maxi-
mum utility, denoted 𝑈 , in 𝐺

keep the edges with a
utility higher than 𝑈

2

𝐶 (𝐺) ≤ 𝑅 ?
yes

stop

no

The idea of this meta-heuristic is to select among the 𝐾 shortest
possible edges, the one with the best utility score and to eliminate
the ones that are short but not very useful i.e. that don’t increase
much 𝑇 (𝐺).

By iterating this process until reaching the desire maximum
building cost 𝑅, we are able to transform the minimum spanning
tree into an effective network that takes into account both the
operator’s and the travellers’ objectives. Of course, the more we
increase 𝑅, the more effective is the network at the end. Thus, the
choice of 𝑅 is up to the operator who will choose considering his
budget.

5 EVALUATION
In order to evaluate our link prediction approach, we compare the
computed graph on Paris subway stations to the real network in
terms of average travelling time.

We run the heuristic with 𝐾 = 10 and 𝑅 = 25 billions € which is
the cost of the real Parisian network.

After some research on subway networks, we choose 𝛼 =120
million € per kilometer and 𝑆 = 25 km/h (taking the stop into
account by averaging).

6 RESULTS
Fig 4 show the graph obtained after adding 75 tunnels to the initial
graph. Table 1 show the comparative results on the initial, computed
and real network.

By observing the predicted link in red, one can see that some
shortcuts were added between stations that were geographically
close but not well connected. By performing our heuristic on top of
a minimal spanning tree, we are able to compute a network almost
as efficient as the real Parisian subway and at the same cost.
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Figure 4: On top : computed network with 𝐾 = 10 and 𝑅 = 25
bil. € Red links are the one predicted by our heuristic.
Below : the real Parisian metro as a comparison.

This shows that the modeling of our problem, the definition of
the average travelling time as well as the utility score we introduced
are relevant to create congestion resilient transportation networks.

Spanning tree Heuristic network Paris network

Total length 154 km 208 km 209 km
𝐶 (𝐺) 18,518 md 25,018 md 25,234 md
𝑇 (𝐺) 23,00 min 15,44 min 15,27 min

Table 1: Building cost and average travelling time of the dif-
ferent graphs.

7 CONCLUSION
In this work we have described the problem of constructing a trans-
portation network as a constrained optimization problem on a
graph space. This approach is part of the Network Design Prob-
lems. Starting from the minimum spanning tree, we succeeded in
founding a network almost identical to the real Parisian subway.

We could iterate the heuristic with a higher maximum building
cost to find an even more effective network but it would take more
time to run. Our heuristic could be used for other graph optimiza-
tion problems where there is a notion of average travelling time.
For example, one can imagine a computer network problem where
the operator wants to connect servers in an effective but not too
expansive manner.

A first difficulty of the problem is that we have placed ourselves
in the case where no initial structure is provided; the operator
must build the network from scratch from the geographical posi-
tions of the stations and the associated traffics. This required us to
find an initial structure that can respect the connectivity and cost
constraints, here a minimum spanning tree.

A second difficulty is that we cannot treat this problem in an
exact way nor use classical link prediction methods based on neigh-
borhood or proximity information which were not relevant for our
problem. Thus we propose a link prediction heuristic based on the
spanning tree. To do so, we define a utility score for a given pair of
stations and with respect to our objective function.

The results obtained and the comparison with the real Parisian
metro show the relevance of our approach.

8 FURTHER IMPROVEMENTS
Several improvements are to be considered. First, the computation
time is still relatively long because of the need to obtain all the
shortest paths of the graph on a regular basis. Secondly, the mini-
mum spanning tree structure as the initial graph may not be the
best one because we directly try to minimize the cost of the opera-
tor. A multi-objective and more complex approach could surely be
considered by seeking to optimize the average travelling time from
the start. This tree structure also makes it difficult to use stochastic
methods such as random walks because of the non-existence of
cycles in the graph. Finally, a last avenue of improvement would
be to perhaps consider that the operator is trying to improve an
already existing transportation network. Supervised link prediction
techniques could certainly be interesting for this purpose.
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